
Optimizing Chemical Reactions with Deep Reinforcement Learning
Zhenpeng Zhou,† Xiaocheng Li,‡ and Richard N. Zare*,†

†Department of Chemistry, Stanford University, Stanford, California 94305, United States
‡Department of Management Science and Engineering, Stanford University, Stanford, California 94305, United States

ABSTRACT: Deep reinforcement learning was employed to
optimize chemical reactions. Our model iteratively records the
results of a chemical reaction and chooses new experimental con-
ditions to improve the reaction outcome. This model out-
performed a state-of-the-art blackbox optimization algorithm by
using 71% fewer steps on both simulations and real reactions.
Furthermore, we introduced an efficient exploration strategy by
drawing the reaction conditions from certain probability distri-
butions, which resulted in an improvement on regret from
0.062 to 0.039 compared with a deterministic policy. Combining the efficient exploration policy with accelerated microdroplet
reactions, optimal reaction conditions were determined in 30 min for the four reactions considered, and a better understanding of
the factors that control microdroplet reactions was reached. Moreover, our model showed a better performance after training on
reactions with similar or even dissimilar underlying mechanisms, which demonstrates its learning ability.

■ INTRODUCTION

Unoptimized chemical reactions are costly and inefficient in
regard to time and reagents. A common way for chemists to
optimize reactions is to change a single experimental condition at
a time while fixing all the others.1 This approach will often miss
the optimal conditions. Another way is to search exhaustively
all combinations of reaction conditions via batch chemistry.
Although this approach has a better chance to find the global
optimal condition, it is time-consuming and expensive. An effi-
cient and effective framework to optimize chemical reactions will
be of great importance for both academic research and industrial
production.We present here one potential approach to achieving
this goal.
There have been various attempts to use automated algorithms

to optimize chemical reactions.2 Jensen and co-workers utilized
the simplex method to optimize reactions in microreactors.1,3

Poliakoff and co-workers constructed a system with what they
called a stable noisy optimization by branch and fit (SNOBFIT)
algorithm to optimize reactions in supercritical carbon dioxide.4

Jensen and co-workers optimized the Suzuki−Miyaura reac-
tion, which involves discrete variables, by automated feedback.5

There are also numerous studies on optimizing a chemical
reaction in flow reactors.6 Truchet and co-workers optimized the
Heck−Matsuda reaction with a modified version of the Nelder−
Meadmethod.7 Lapkin and co-workers developed a model-based
design of experiments and self-optimization approach in flow.8

Ley and co-workers built a novel Internet-based system for
reaction monitoring and optimization.9 Bourne and co-workers
developed automated continuous reactors, which use high per-
formance liquid chromatography (HPLC)10 or online mass
spectrometry (MS)11 for reaction monitoring and optimization.
deMello and co-workers designed a microfluidic reactor for
controlled synthesis of fluorescent nanoparticles.12 Cronin and
co-workers provided a flow-NMR platform for monitoring and

optimizing chemical reactions.13 We are going to suggest a
different approach that we believe will further improve the
reaction optimization process.
Recently, the idea of machine learning and artificial

intelligence14,15 has produced surprising results in the field of
theoretical and computational chemistry. Aspuru-Guzik and co-
workers designed graph convolutional neural networks for
molecules,16 and realized automatic chemical design with data-
driven approaches.17−19 One step further, Pande and co-workers
extended the idea of graph convolution,20 and proposed one-shot
learning for drug discovery.21Meanwhile, both the Aspuru-Guzik
group and the Jensen group derived intuition of predicting
organic reactions from the machine learning perspective.22,23

Besides, the machine learning approach also succeeded in using
experimental data to make predictions. Norquist and co-workers
predicted the reaction outcome from failed experiments with the
help of a support vector machine.24 Sebastian and co-workers
utilized neural networks to identify skin cancers,25 Zare and
co-workers applied machine learning/statistics on mass spec-
trometry data to determine cancer states26 and identify personal
information.27 Inspired by all the current successes achieved for
prediction, we have applied the decision-making framework to
problems in chemistry, specifically chemical reactions.
We developed a model we call the Deep Reaction Optimizer

(DRO) to guide the interactive decision-making procedure
in optimizing reactions by combining state-of-the-art deep
reinforcement learning with the domain knowledge of chemistry.
Iteratively, the DRO interacts with chemical reactions to obtain
the current experimental condition and yield, and determines the
next experimental condition to attempt. In this way, DRO not
only served as an efficient and effective reaction optimizer but
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also provided us a better understanding of the mechanism
of chemical reactions than that obtained using traditional
approaches. With extensive experiments on simulated reactions,
our method outperformed several state-of-the-art blackbox
optimization algorithms of covariance matrix adaption−
evolution strategy (CMA-ES),28 the Nelder−Mead simplex
method,29 and stable noisy optimization by branch and fit
(SNOBFIT)30 by using 71% fewer steps. We also demonstrated
that DRO applied to four real microdroplet reactions found the
optimal experimental conditions within 30 min, owing its success
to the acceleration of reaction rates in microdroplet chem-
istry31,32 and to its efficient optimization algorithm. Moreover,
our model achieved better performance after running on real
reactions, showing its capability to learn from past experience.
Besides, our model showed strong generalizability in twoways:

First, based on optimization of a large family of functions, our
optimization goal can be not only yield but also selectivity, purity,
or cost, because all of them can be modeled by a function of
experimental parameters. Second, a wide range of reactions can
be accelerated by 103 to 106 times in microdroplets.33 Showing
that a microdroplet reaction can be optimized in 30 min by
our model of DRO, we therefore propose that a large class of
reactions can be optimized by our model. The wide applicability
of our model suggests it to be useful in both academic research
and industrial production.

■ METHOD
Optimization of Chemical Reactions. A reaction can be

viewed as a system taking multiple inputs (experimental
conditions) and providing one desired output. Example inputs
include temperature, solvent composition, pH, catalyst, and time.
Example outputs include product yield, selectivity, purity, and
cost. The reaction can be modeled by a function r = R(s), where
s stands for the experimental conditions and r denotes the
objective, say, the yield. The function R describes how the
experimental conditions s affect r. Reaction optimization refers to
the procedure for searching the combination of experimental
conditions that achieves the objective in an optimal manner, also,
desirably with the least number of steps.
In general, chemical reactions are expensive and time-con-

suming to conduct, and the outcome can vary largely, which is
caused in part by measurement errors. Motivated by these
considerations, we developed our model of Deep Reaction
Optimizer (DRO) with the help of reinforcement learning.
Deep Reaction Optimizer by Reinforcement Learning.

Reinforcement learning is an area of machine learning concerned
with how the “decision-maker(s)” ought to take sequential
“actions” in a prescribed “environment” so as to maximize a notion
of cumulative “reward”. In the context of reaction optimization,
where the reaction is the environment, an algorithm or person
(decision-maker) decides what experimental conditions to try
(actions), in order to achieve the highest yield (reward).
Mathematically, the underlying model for reinforcement

learning is the Markov decision process characterized by
  P R( , , { }, )sa , where

•  denotes the set of states s. In the context of reaction
optimization,  is the set of all possible combinations of
experimental conditions.

•  denotes the set of actions a. In the context of reaction
optimization,  is the set of all changes that can be made
to the experimental conditions, for example, increasing the
temperature by 10 °C and so forth.

• {Psa} denotes the state transition probabilities. Concretely,
Psa specifies the probability of transiting from s to another
state with action a. In the context of a chemical reaction,
Psa specifies to what experimental conditions the reac-
tion will move if we decide to make a change a to the
experimental condition s. Intuitively, Psa measures the
inaccuracy when operating the instrument. For example,
the action of increasing the temperature by 10 °C may
result in a temperature increase of 9.5−10.5 °C.

• R denotes the reward function of state s and action a. In the
environment of a reaction, the reward r is only a function
of state s, i.e., a certain experimental condition s (state)
is mapped to yield r (reward) by the reward function
r = R(s).

The core of reinforcement learning is to search for an optimal
policy, which captures the mechanism of decision-making. In the
context of chemical reactions, the policy refers to the algorithm
that interacts with the chemical reaction to obtain the current
reaction condition and reaction yield, from which the next
experimental conditions are chosen. Rigorously, we define
the policy as the function π, which maps from the current
experimental condition st and history of the experiment record

t to the next experimental condition, that is,

π=+s s( , )t t t1 (1)

where = s sr r{ , , ..., , }t t t0 0 is the history, and t records the
number of steps we have taken in reaction optimization.
Intuitively, the optimization procedure can be explained as

follows: We iteratively conduct an experiment under a specific
experimental condition and record the yield. Then the policy
function makes use of all the history of experimental record
(what condition led to what yield) and tells us what experimental
condition we should try next. This procedure is described in
Algorithm 1 and illustrated in Scheme 1.

Recurrent Neural Network as the Policy Function. Our
DRO model employs the recurrent neural network (RNN) to
fit the policy function π under the settings of chemical reactions.
A recurrent neural network is a nonlinear neural network

Scheme 1. Visualization of the DRO Model Unrolled over
Three Time Stepsa

aAs stated earlier, the environment of chemical reaction is
characterized by the reaction function of r = R(s).
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architecture in machine learning. An RNN parametrized by
θ usually takes the form of

= θ+ +x h x h, RNN ( , )t t t t1 1 (2)

where xt and xt+1 are the data at time steps t and t + 1, and ht and
ht+1 refer to the hidden state at time steps t and t + 1. The hidden
state contains the history information that RNN passes to the
next time step, enabling the network to remember past events,
which can be used to interpret new inputs. This property makes
RNN suitable as the policy for making decisions, which takes a
similar form of the policy function of eq 1. A modified version of
RNN to model the policy function,

= θ+ +s h s hr, RNN ( , , )t t t t t1 1 (3)

where at time step t, ht is the hidden state to model the history

t , st, denotes the state of reaction condition, and rt is the yield
(reward) of reaction outcome. The policy of RNN maps the
inputs at time step t to outputs at time step t + 1. The model is
exemplified as in Scheme 1.
Training the DRO. The objective in reinforcement learning

is to maximize the reward by taking actions over time. Under the
settings of reaction optimization, our goal is to find the optimal
reaction condition with the least number of steps. Then, our loss
function l(θ) for the RNN parameters θ is defined as

∑θ = − −
= <

l r r( ) ( max )
t

T

t
i t

i
1 (4)

where T is the time horizon (total number of steps) and rt is the
reward at time step t. The term inside the parentheses mea-
sures the improvement we can achieve by iteratively conducting
different experiments. The loss function (eq 4) encourages
reaching the optimal condition faster, in order to address the
problem that chemical reactions are expensive and time-
consuming to conduct.
The loss function l(θ) is minimized with respect to the

RNN parameters θ by an algorithm of gradient descent, which
computes the gradient of the loss function ∇θl(θ), and updates
the parameter of θ by the rule θ ← θ − η∇θl(θ), where η is the
step size.

■ RESULTS AND DISCUSSION
Pretraining on Simulated Reactions. As mentioned

earlier, chemical reactions are time-consuming to evaluate.

Although our DRO model can greatly accelerate the procedure,
we still propose to first train the model on simulated reactions
(a technique called pretraining in machine learning). A class of
nonconvex “mixture Gaussian density functions” is used as the
simulated reactions environment r = R(s). The nonconvex
functions could have multiple local minima.
The motivation for using a mixture of Gaussian density func-

tions comes from the idea that they can be used to approximate
arbitrarily close all continuous functions on a bounded set.
We assume that the response surface for most reactions is a
continuous function, which can be well approximated by a
mixture of Gaussian density functions. Besides, a mixture of
Gaussian density functions often has multiple local minima.
The rationale behind this is that the response surface of a
chemical reaction may also have multiple local optima. As a
result, we believe amixture of Gaussian density functions can be a
good class of function to simulate real reactions.
We compared our DRO model with several state-of-the-art

blackbox optimization algorithms of covariance matrix adaption−
evolution strategy (CMA-ES), Nelder−Mead simplex method,
and stable noisy optimization by branch and fit (SNOBFIT) on
another set of mixture Gaussian density functions that are unseen
during training. This comparison is a classic approach for model
evaluation in machine learning. We use “regret” to evaluate the
performance of the models. The regret is defined as

= −t R s rregret( ) max ( )
s

t (5)

and it measures the gap between the current reward and the largest
reward that is possible. Lower regret indicates better optimization.
In the context of simulated reaction, the functions are randomly
generated and we can access the global maximum/minimum value
of the function, which corresponds to the “largest reward that
is possible”.
Figure 1A shows the average regret versus time steps of the two

algorithms from which we see that DRO outperforms CMA-ES
significantly by reaching a lower regret value in fewer steps.
For 5000 random functions, DRO can reach the criterion of
regret ≤0.05 in approximately 32 steps, on average, whereas
CMA-ES needs 111 steps, SNOBFIT needs 187 steps, and
Nelder−Mead fails to reach the criterion. Overall, the experi-
ments demonstrate that ourmodel outperforms those algorithms
on the task of nonconvex function optimization, i.e., simulated
chemical reaction optimization.

Figure 1. (A) Comparison of average regret of CMA-ES, Nelder−Mead simplex method, SNOBFIT, and DRO. The average regret is calculated as the
average regret on 1000 random nonconvex functions. (B) The observed regret of 10 random nonconvex functions in which each line is the regret of one
function.
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Randomized Policy for Deep Exploration. Although
our model of DRO optimizes nonconvex functions faster than
CMA-ES, we observe that DRO sometimes get stuck in a local
maximum (Figure 1B) because of the deterministic “greedy”
policy, where greedy means making the locally optimal choice at
each stage without exploration. In the context of reaction
optimization, a greedy policy will stick to one reaction condition
if it is better than any other conditions observed. However,
the greedy policy will get trapped in a local optimum, failing to
explore some regions in the space of experimental conditions,
which may contain a better reaction condition that we are
looking for. To further accelerate the optimization procedure in
this aspect, we proposed a randomized exploration regime to
explore different experimental conditions, in which random-
ization means drawing the decision randomly from a certain
probability distribution. This idea came from the work of
Van Roy and co-workers,34 which showed that deep exploration
can be achieved from randomized value function estimates.
The stochastic policy also addresses the problem of randomness
in chemical reactions.
A stochastic recurrent neural network was used to model a

randomized policy,35 which can be written as

μ

μ

Σ

Σ

=

∼

θ+ + +

+ + +

h h s

s

r, , RNN ( , , )

( , )

t t t t t t

t t t

1 1 1

1 1 1 (6)

Similar to the notations introduced before, the RNN is used to
generate the mean μt+1, and the covariance matrix Σt+1; the next
state st+1 is then drawn from a multivariate Gaussian distribution
of μ Σ+ +( , )t t1 1 , at time step t + 1. This approach achieved deep
exploration in a computationally efficient way.
Figure 2 compares between the greedy policy and the

randomized policy on another group of simulated reactions.

Although the randomized policy was slightly slower, it arrives to a
better function value owing to its more efficient exploration
strategy. Comparing the randomized policy with a deterministic
one, the average regret was improved from 0.062 to 0.039, which
shows a better chance of finding the global optimal conditions.
Optimization of Real Reactions. We carried out four

experiments in microdroplets and recorded the production yield:
The Pomeranz−Fritsch synthesis of isoquinoline (Scheme 2a),36
Friedlan̈der synthesis of a substituted quinoline (Scheme 2b),36

the synthesis of ribose phosphate (Scheme 2c),37 and the
reaction between 2,6-dichlorophenolindophenol (DCIP) and

ascorbic acid (Scheme 2d).38 In all four reactions, two reagents
are filled in separate syringes. Solutions from those two syringes
are mixed in a T-junction and sprayed from an electrospray
ionization (ESI) source with high voltage and pressure. The flow
rate (from 0 to 10 μL/min), voltage (from 0 to 10 kV), and
pressure (from 0 to 120 psi) applied on the spray source are the
experimental parameters that are optimized, with all other
conditions held constant. In these four reactions, the variables are
continuous. The reaction yield of product, which was measured
by mass spectrometry, was set as the optimization objective.
The initial reaction conditions are randomly chosen. DRO,
CMA-ES, and one variable at a time (OVAT) methods were
compared on the four reactions. The DRO model had been
pretrained on simulated reaction data, and the “OVAT” refers to
the method of scanning a single experimental condition while
fixing all the others, i.e., hold all variables but one, and see the best
result when the one free variable is varied. As mentioned before,
CMA-ES is the state-of-the-art blackbox optimizer in machine
learning and OVAT is the classic approach followed by many
researchers and practitioners in chemistry. DRO outperformed
the other two methods by reaching a higher yield in fewer steps
(Figure 3). In both reactions, DRO found the optimal condition
within 40 steps, with the total time of 30 min required to
optimize a reaction. In comparison, CMA-ES needs more than
120 steps to reach the same reaction yield as DRO, and OVAT
failed to find the optimal reaction condition.
The optimal conditions in microdroplet reactions may not

always be the same as those in bulk reactions. It is also our
experience that most reactions in bulk follow the same reaction
pathway as in microdroplets, so that we feel that learning to
optimize microdroplet reactions may often have a direct bearing
on bulk reactions. For simulated reactions, we showed that the
model of DRO can optimize any random mixture Gaussian
density function. And it is provable that all continuous functions
on a bounded set can be approximated arbitrarily close by a
mixture of Gaussian density functions. Given that the response
surface of a large quantity of reactions can be viewed as a con-
tinuous function, we propose that our model of DRO can
optimize a bulk-phase reaction as well.
To demonstrate the applicability of our model to a more

general experimental setup, we optimized the bulk-phase reac-
tion of silver nanoparticle synthesis. Silver nanoparticles were
synthesized by mixing silver nitrate (AgNO3), sodium borohy-
dride (NaBH4), and trisodium citrate (TSC).39 The optimization
objective was set to be maximizing the absorbance at 500 nm
(in order to get silver nanoparticles of approximately 100 nm),
and the optimization parameters were the concentration of
NaBH4 (from 0.1 to 10 mM), the concentration of TSC (from
1 to 100mM), and reaction temperature (from 25 to 100 °C), with
all other conditions held constant. Figure 4 shows the comparison
of DRO and CMA-ES on silver nanoparticle synthesis. We
therefore conclude that DRO is extendable to bulk-phase reactions.

Learning for Better Optimization. We also observed that
the DRO algorithm is capable of learning while optimizing on
real experiments. In other words, each time running a similar
or even dissimilar reactions will improve the DRO policy.
To demonstrate this point, the DRO was first trained on the
reaction of the Pomeranz−Fritsch synthesis of isoquinoline and
then tested on the reaction of the Friedlan̈der synthesis of
substituted quinoline. Figure 5A compares the performance of
the DRO before and after training. The policy after training
showed a better performance by reaching a higher yield at a
faster speed.

Figure 2. Comparison of deterministic policy and randomized policy in
the model of DRO.
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The DRO policy showed better performance not only
after training on a reaction with similar mechanism but also on
reactions with different mechanisms. Figure 5B compares the
performance of the DRO on ribose phosphate synthesis before
and after training on the Pomeranz−Fritsch and Friedlan̈der
syntheses. Although they have achieved similar product yield, the
DRO after training can reach the optimal condition with a faster
speed.
Understanding the Reaction Mechanism. The reac-

tion optimization process also provided us insights into the

reaction mechanism. The reaction response surface was fitted by
a Gaussian process (Figure 6), which showed that the yield at a
low voltage of 1 kV was more sensitive to the pressure and flow
rate change than the reaction at a higher voltage. On the other
hand, the feature selection by Lasso40,41 suggests that pressure/
(flow rate), voltage/(flow rate), and square of pressure were the
three most important features in determining the reaction yield.
Flow rate and pressure were correlated because higher flow rate
resulted in more liquid flowing out. In turn, the higher liquid flow
needed higher pressure to generate smaller-sized droplets, in

Scheme 2. (a) Pomeranz−Fritsch Synthesis of Isoquinoline, (b) Friedlan̈der Synthesis of a Substituted Quinoline, (c) Synthesis of
Ribose Phosphate, and (d) the Reaction between 2,6-Dichlorophenolindophenol (DCIP) and Ascorbic Acid

Figure 3. Performance comparison of CMA-ES, DRO, and OVAT methods on the microdroplet reaction of (A) Pomeranz−Fritsch synthesis of
isoquinoline, (B) Friedlan̈der synthesis of a substituted quinoline, (C) synthesis of ribose phosphate, and (D) the reaction between DCIP and ascorbic
acid. The signal intensity can be converted into reaction yield with calibration.
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which reactions had a higher rate. The correlation was similar for
voltage/(flow rate) pairs. Higher flow rate made the droplets
larger; as a result, a higher voltage was required to generate
enough charge to drive the reactions occurring inside them.
The quadratic dependence on the pressure suggested that there
was an optimal pressure for the reaction, because higher
pressure would generate smaller-sized droplets with higher
reaction rates, but smaller droplets would also evaporate faster;
the faster evaporation would result in a shorter reaction time.
The optimization process of DRO provides a better sampling
than a grid search for LASSO regression. The DRO algo-
rithm samples around the response surface with higher
uncertainty, which reduces the bias of fitting. Besides, DRO
also samples more around the optimal point, in order to get a
more accurate fitting near the optimal. All of this data analysis
leads us to a better understanding of how reactions occur
in microdroplets.

■ CONCLUSION
We have developed the DRO model for optimizing chemical
reactions and demonstrated that it has superior performance
under a number of different circumstances. The DRO model
combines state-of-the-art deep reinforcement learning techni-
ques with the domain knowledge of chemistry, showcasing
its capability in both speeding up reaction optimization and
providing insight into how reactions take place in droplets.
We suggest that the optimization strategy of integratingmicrodroplet

reactions with our DRO acceleration can be applied to a wide
range of reactions.

■ EXPERIMENTAL DETAILS
Model Design. A modified long short-term memory

(LSTM)42 architecture is proposed to accept two inputs of
xt−1 and yt−1, and output the new xt. The LSTM cell is defined as
follows:

σ

σ
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(7)

Figure 4. Performance comparison of CMA-ES and DRO on the bulk-
phase reaction of silver nanoparticle synthesis.

Figure 5. (A) The performance on Friedlan̈der synthesis of DRO before and after training on the Pomeranz−Fritsch synthesis. (B) The performance on
ribose phosphate synthesis of DRO before and after training on the Pomeranz−Fritsch and Friedlan̈der syntheses.

Figure 6. Possible reaction response surface of the Friedlan̈der synthesis
of a substituted quinoline, predicted from the optimization process.
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in which the variables are

xt−1, the input (reaction conditions) at time step t − 1;
yt−1, the output (reaction yield) at time step t − 1;
ct, the cell state vector;
f x,t, f y,t, ix,t, iy,t, ox,t, and oy,t, gate vectors;
W, U, and b, parameter matrices and vectors.

We denote elementwise multiplication by ◦ to distinguish it
from matrix multiplication. The functions f, i, and o are named
from forget, input, and output.
The proposed LSTM cell can be abbreviated as

= − − −h x h x y, LSTM( , , )t t t t t1 1 1 (8)

In order to learn the optimal policy modeled by the RNN,
we define a loss function inspired by the regret in reinforcement
learning community as

∑θ
γ

= −
= <

l r r( )
1

(max )
t

T

t i t
i t

1 (9)

where T is the overall time horizon, rt is the reward at time step t,
and γ ∈ (0, 1) is the discount factor. The term inside the
parentheses measures the improvement we can achieve by
exploration. The intuition of applying the discount factor is that
the importance of getting a maximum reward increases as time
goes on.
As mentioned before, chemical reactions are time-consuming

to evaluate. Therefore, we need to train the model on mock
reactions first. A class of nonconvex functions of the mixture
Gaussian probability density functions is used as mock reactions,
which allows a general policy to be trained. AGaussian error term
is added to the function to model the large variance property of
chemical reaction measurements. The mock reactions can be
written as

∑ μ μπ εΣ Σ= | | − − − +
=

− − −⎜ ⎟
⎛
⎝

⎞
⎠x xy c (2 ) exp

1
2

( ) ( )
i

N

i
k

i i i i
1

/2 1/2 T 1

(10)

where ci is the coefficient, μi is the mean, and Σi is the covariance
of a multivariate Gaussian distribution; k is the dimension of
the variables. ε σ∼ (0, )2 is the error term, which is a random
variable drawn from a Gaussian distribution with mean 0 and
variance σ2. In our case, the number of parameters to be
optimized is three.N was set to 6. μi was sampled from a uniform
distribution from 0.01 to 0.99, diagonalized Σi was sampled
from a Gaussian distribution of (0, [0.3, 0.3, 0.3]), and the
coefficient of ci was sampled from a Gaussian distribution of

(0, 0.2) and then normalized.
Training Details. The framework of tensorflow43 is used to

formulate and train the model. The LSTM structure is unrolled
on trajectories of T = 50 steps, the nonconvex functions with
random parameters in each batch are used as training sets, and
the loss function (eq. 9) is used as the optimization goal. The
Adam optimizer is used to train the neural network.
The hyperparameters chosen are “batch_size”, 128; “hidden_-

size”, 80; “num_layers”, 2; “num_epochs”, 50000; “num_par-
ams”, 3; “num_steps”, 50; “unroll_length”, 50; “learning_rate”,
0.001; “lr_decay”, 0.75; “optimizer”, “Adam”; “loss_type”, “oi”;
and “discount_factor”, 0.97.
Chemicals and Instrumentation. All chemicals are

purchased as MS grade from Sigma-Aldrich (St. Louis, MO).
Mass spectra are obtained using an LTQOrbitrap XLHybrid Ion

Trap-Orbitrap Mass Spectrometer from Thermo Fisher Scientific
Inc. (Waltham, MA).

Experimental Setup. In the microdroplet reactions, reactant
solutions from two syringes are mixed through a T-junction and
sprayed in a desorption electrospray ionization source with
application of high voltage and pressure. The reactions occur in
droplets and are monitored by a mass spectrometer.
In the reaction of silver nanoparticle synthesis, sodium

borohydride and trisodium citrate of specific concentrations
were mixed and put into a bath at a specific temperature. Silver
nitrate solution was then added dropwise. The concentration of
AgNO3 was fixed at 1 mM. The concentration of NaBH4 ranged
from 0.1 to 10 mM, the concentration of TSC ranged from 1 to
100 mM, and reaction temperature ranged from 25 to 100 °C.

Feature Selection by Lasso. Let p be the gas pressure, u be
the voltage, and v be the flow rate. The engineered features are u,
v, pu, pv, uv, p/u, p/v, u/v, p2, u2, v2. The loss function of lasso
regression is θ θ λ θ= − +l y x( ) T

2
2

1, where ∥•∥2 is the 2
norm, ∥•∥1 is the 1 norm, θ is the model parameter, x is the input
features, y is the output results, and λ is the regularization
coefficient. Features will pop out in an order corresponding to
their importance when increasing the regularization coefficient
while minimizing the loss function.13 Lasso regression is per-
formed repeatedly so that exactly 1, 2, or 3 features are selected;
the top three most important features are p/v, u/v, and p2.

■ DATA AVAILABILITY
The corresponding code will be released on github.
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